
18 CS 54

Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define the following terms with examples alphabet, powers of an alphabet string, string concatenation and languages.
(10 Marks)
b. Define DFSM. Design a DFSM to accept each of the following languages:
i) $\mathrm{L}=\left\{\mathrm{W} \in\{0.1\}^{*}: \mathrm{W}\right.$ is ending with 011$\}$
ii) $\mathrm{L}=\left\{\mathrm{W} \in\{0.1\}^{*}: \mathrm{W}\right.$ has odd numbers of a's and even numbers of b's $\}$
(10 Marks)
2 a. Convert the following NDFSM to DFSM:

δ	ε	a	b	c
$\rightarrow \mathrm{p}$	ϕ	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$
q	$\{\mathrm{p}\}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ
${ }^{\mathrm{r}}$	$\{\mathrm{q}\}$	$\{\mathrm{r}\}$	ϕ	$\{\mathrm{p}\}$

(10 Marks)
b. Define distinguishable and Indistinguishable states. Minimize the following DFSM.

δ	a	b
$\rightarrow \mathrm{A}$	B	F
B	G	C
$* \mathrm{C}$	A	C
D	C	G
$\stackrel{\mathrm{E}}{2}$	H	F
F	C	G
G	G	E
H	G	C

3 a. Define Regular expression. Write the regular expression for the following languages:
i) To accept strings of a's and b's such that third symbol from the right is 'a' and fourth symbol from the right is ' b '.
ii) $L=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{m}} ; \mathrm{n} \geq 4, \mathrm{~m} \leq 3\right\}$
(10 Marks)
b. Build a regular expression from the following FSM (Finite State Machine).

Fig.Q.3(b)
c. Write an equivalent NDFSM for the following regular expression $\mathrm{a}\left(\mathrm{a}^{*}+\mathrm{b}^{*}\right)^{*} \mathrm{~b}$.
(04 Marks)

4 a. Show that regular languages are closed under complement and intersection.
(10 Marks)
b. State and prove pumping lemma theorem for regular languages. And show that the language $\mathrm{L}=\left\{\mathrm{WW}^{\mathrm{R}}: \mathrm{W} \in\{0,1\}^{*}\right.$ is not regular $\}$.
(10 Marks)
5 a. Define CFG (Context Free Grammar). Design CFG for the languages.
i) $\quad \mathrm{L}=\left\{\mathrm{O}^{2 \mathrm{n}} 1^{\mathrm{m}} \mid \mathrm{n}>=0, \mathrm{~m}>=0\right\}$
ii) $\quad \mathrm{L}=\left\{\mathrm{O}^{\mathrm{i}} 1^{\mathrm{j}} 2^{\mathrm{k}} \mathrm{i}=\mathrm{j}\right.$ or $\left.\mathrm{j}=\mathrm{k}\right\}$
(10 Marks)
b. Define Ambiguity. Is the following grammar ambiguous? Give reason.
$\mathrm{S} \rightarrow \mathrm{iCts} \mid \mathrm{CtSeS} \mathrm{a}$
$\mathrm{C} \rightarrow \mathrm{b}$
(10 Marks)
6 a. Define CNF (Chomsky Normal Form). Convert the following CFG to CNF.
$\mathrm{S} \rightarrow \mathrm{aACa}, \mathrm{A} \rightarrow \mathrm{B}|\mathrm{a}, \mathrm{B} \rightarrow \mathrm{C}| c, \mathrm{C} \rightarrow \mathrm{cC} \mid \varepsilon$
(10 Marks)
b. Define PDA (Push Down Automata). Design a PDA to accept the following language, $L=\left\{a^{n} b^{n}: n>=0\right\}$. Draw the transition diagram for the constructed PDA. Show the ID's for the string aaabbb.
(10 Marks)
7 a. Define a Turing Machine. Explain the working of a Turing Machine.
(08 Marks)
b. Design a Turing Machine to accept $L=\left\{0^{n} 1^{n} 2^{n} \mid n>=0\right\}$. Draw the transition diagram. Show the moves made for string 001122.
(12 Marks)
8 a. Design a TM for addition of 2 numbers $(2+3)$ with transition diagram and ID for the same.
b. Define and differentiate DTM and NDTM.

9 a. Explain post correspondence problem.
(08 Marks)
b. Explain Halting problem in Turing Machine,
c. Write a note on Church Turing Hypothesis.

10 a. Explain three variants of Turing Machine.
b. Write a note on Quantum Computation.

