

Fifth Semester B.E. Degree Examination, July/August 2021 Automata Theory and Computability

Time: 3 hrs.

1

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Define the following terms with examples alphabet, powers of an alphabet string, string concatenation and languages. (10 Marks)
 - b. Define DFSM. Design a DFSM to accept each of the following languages:
 - i) $L = \{W \in \{0,1\}^* : W \text{ is ending with } 011\}$
 - ii) $L = \{W \in \{0,1\}^* : W \text{ has odd numbers of a's and even numbers of b's}$ (10 Marks)
- **2** a. Convert the following NDFSM to DFSM:

δ	3	a	b	c
→p	φ	{ p }	{q}	{r}
q	{p}	{q}	{r}	ø
*r	{q}	{ r }	¢	{p}

b. Define distinguishable and Indistinguishable states. Minimize the following DFSM.

(10 Marks)

(10 Marks)

- 3 a. Define Regular expression. Write the regular expression for the following languages:
 - i) To accept strings of a's and b's such that third symbol from the right is 'a' and fourth
 - symbol from the right is 'b'.
 - ii) $L = \{a^n b^m; n \ge 4, m \le 3\}$
 - b. Build a regular expression from the following FSM (Finite State Machine). (06 Marks)

c. Write an equivalent NDFSM for the following regular expression $a(a^* + b^*)^*b$. (04 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 of 2

18CS54

- Show that regular languages are closed under complement and intersection. 4 (10 Marks) a. State and prove pumping lemma theorem for regular languages. And show that the language b. $L = \{WW^{R} : W \in \{0, 1\}^{*} \text{ is not regular}\}.$ (10 Marks)
- 5 Define CFG (Context Free Grammar). Design CFG for the languages. a.
 - $L = \{O^{2n}1^m | n \ge 0, m \ge 0\}$ i)
 - $L = \{O^{i}1^{j}2^{k} | i = j \text{ or } j = k\}$ ii)
 - b. Define Ambiguity. Is the following grammar ambiguous? Give reason. $S \rightarrow iCts |iCtSeS|a$
 - $C \rightarrow b$
- Define CNF (Chomsky Normal Form). Convert the following CFG to CNF. 6 a. $S \rightarrow aACa, A \rightarrow B|a, B \rightarrow C|c, C \rightarrow cC|\epsilon$
 - b. Define PDA (Push Down Automata). Design a PDA to accept the following language, $L = \{a^n b^n : n \ge 0\}$. Draw the transition diagram for the constructed PDA. Show the ID's for the string aaabbb. (10 Marks)
- Define a Turing Machine. Explain the working of a Turing Machine. 7 (08 Marks) a. b. Design a Turing Machine to accept $L = \{0^n 1^n 2^n | n \ge 0\}$. Draw the transition diagram. Show the moves made for string 001122. (12 Marks)
- Design a TM for addition of 2 numbers (2 + 3) with transition diagram and ID for the same. 8 a. (14 Marks)
 - Define and differentiate DTM and NDTM. b.
- 9 Explain post correspondence problem. a.
 - Explain Halting problem in Turing Machine. b.
 - Write a note on Church Turing Hypothesis. c.
- 10 a. Explain three variants of Turing Machine. (12 Marks) Write a note on Quantum Computation. b. (08 Marks)

2 of 2

(10 Marks)

(10 Marks)

(10 Marks)

(08 Marks) (04 Marks)

(06 Marks)

(08 Marks)